CMFs for High-Friction Surface Treatment (HFST) and High-Tension Cable Median Barriers (HTCMB) in Pennsylvania

Vikash V. Gayah

The Pennsylvania State University

CMFs in Real Life

December 13, 2023

Research funded by:

Acknowledgements

- Penn State
 - Eric Donnell, Professor
 - Hao Liu, Postdoctoral Scholar
 - Pengxiang Zhang, Graduate Student
 - Abhishek Prajapati, Graduate Student
- PennDOT
 - Jason Hershock, Manager, Safety Engineering & Risk Management Unit
 - Dillan Bujak, Senior Civil Engineer

Goal of these two projects was to estimate CMFs for HFST and HTCMBs in Pennsylvania

- High friction surface treatment (HFST)
 - Applied on horizontal curves of two-lane undivided roadways
 - Intersections
- High tension cable median barriers (HTCMBs)
 - Divided limited-access highways

HFST

High friction surface treatment

- Application of a highfriction aggregate material to the pavement surface
- Aims to increase the friction between vehicle tires and the road surface
- Applied at locations where vehicles are more likely to lose control, especially under wet conditions

Source: FHWA

Safety effectiveness of HFST applied to horizontal curves in the literature suggests significant benefit

Road Type	Crash Type	CMF Range
Curves	Total	0.370-0.529
	Injury	0.490-0.885
	Run-out road	0.226-0.569
	Wet-road	0.125-0.385
	head-on plus opposite direction sideswipe	0.416-0.926

December 13, 2023

CMFs in Real Life

(Merritt et al., 2015, Merritt et al., 2020)

HFST installation in Pennsylvania

• Curves

PennDOT District	Number of curves with HFST	Total length (miles)		
1	5	0.465		
2	27	5.392		
3	0	0.000		
4	19	1.609		
5	108	8.339		
6	219	13.274		
8	113	7.988		
9	98	7.578		
10	58	6.758		
11	18	1.578		
12	35	4.364		
Total	700	57.35		

- Intersections
 - 33 intersections with sufficient traffic volumes available for analysis

Applied Empirical Bayes before-after method

Step 1: Develop Safety Performance Function to predict safety performance at locations WITHOUT treatment

> Step 2: Use SPF to predict safety performance at treatment locations had treatment not been applied

> > Step 3: Compared predict and reported safety performance at treatment locations

SPF development for horizontal curves considered the following explanatory variables...

- Traffic volume
- Curve length
- Degree of horizontal curvature
- Number of adjacent horizontal curves
- Speed limit
- Indicator for year
- Indicator for PennDOT engineering district
- Presence of horizontal curve warning signs

Source: MUTCD

CMFs for HFST applied to horizontal curves of two-lane undivided roadways (including adjacent tangent sections)

Crash type	Number of curves	Total length (miles)	Reported crashes in after period	EB estimate in after period	Unbiased CMF	CMF standard error
Total			1,266	2,853.05	0.444*	0.014
FI			568	1136.38	0.500*	0.023
PDO			698	1533.78	0.455*	0.019
ROR		90.51	847	1848.06	0.458*	0.018
HFO			767	1630.07	0.470*	0.019
WR			416	1687.41	0.246*	0.013
НО	530		65	132.32	0.490*	0.066
SS			42	89.68	0.467*	0.077
ROR FI			360	616.07	0.584*	0.034
HFO FI			312	519.34	0.600*	0.037
WR FI			160	536.21	0.298*	0.025
HO FI			47	87.01	0.539*	0.083
SS FI			27	39.89	0.673*	0.138

CMFs disaggregated for rural and urban locations tell the same story

	Crash type	Number of curves	Total length (miles)	Reported crashes in after period	EB estimate in after period	Unbiased CMF	CMF standard error				
	Curves on urban roadways										
	Total			349	899.40	0.388*	0.023				
	FI			173	348.09	0.496*	0.042				
	PDO			176	479.67	0.366*	0.031				
	ROR			228	498.14	0.457*	0.034				
	HFO			205	443.22	0.462*	0.036				
	WR	252	16.04	118	530.80	0.222*	0.022				
	НО			27	50.19	0.534*	0.112				
	SS			23	34.14	0.667*	0.153				
	ROR FI			105	151.33	0.692*	0.075				
	HFO FI			91 126.95	126.95	0.715*	0.083				
	WR FI			52	160.11	0.324*	0.048				
	Curves on rural roadways										
	Total			261	545.73	0.478*	0.033				
	FI		124 220.05	0.563*	0.055						
	PDO			137	270.22	0.506*	0.048				
	ROR			195	426.04	0.457*	0.036				
	HFO			174	350.57	0.496*	0.041				
	WR	278	24.29	88	314.53	0.279*	0.032				
	НО			8	19.36	0.409*	0.150				
	SS			10	12.67	0.776	0.264				
	ROR FI			89	147.21	0.603*	0.069				
	HFO FI			76	121.17	0.626*	0.077				
	WR FI			35	106.54	0.327*	0.058				
* statistica	lly signific	ant at the	95% cor	nfidence leve	el						

December 13, 2023

HFST CMFs also developed for intersections

- SPFs from existing PennDOT projects used
 - 3-leg minor stop-controlled intersection on urban-suburban collectors
 - 3-leg all-way stop-controlled intersection on urban-suburban collectors
 - 4-leg minor stop-controlled intersection on urban-suburban collectors
 - 3-leg minor stop-controlled intersection on urban-suburban arterials
 - 4-leg signalized intersection on urban-suburban arterials
 - 3-leg minor stop-controlled intersection on two-lane rural roads
 - 4-leg signalized intersection on two-lane rural roads

HFST CMFs also developed for intersections

Crash type	Number of intersections	Reported crashes in after period	EB estimate in after period	Unbiased CMF	CMF standard error
Total	33	81	241.747	0.334*	0.042
FI		28	118.742	0.234*	0.048

HTCMB

High tension cable median barriers

- Median barrier designed to prevent cross-median crashes
- These barriers consist of
 - Tensioned steel cables
 - Posts (support the cables)
- Benefits:
 - Cost-effectiveness
 - Minimal disruption to sightlines
 - Ability to contain vehicles

Study Location	Method	Crash Type	CMF Range		
		Fatal	0.04		
		Fatal0.0Incapacitating Injury0.0Incapacitating Injury0.0Fatal and Incapacitating0.0Non-Incapacitating Injury0.1Incapacitating and Non- Incapacitating0.1Incapacitating0.1Incapacitating0.1Incapacitating0.1Incapacitating0.1Incapacitating0.1Incapacitating0.1Incapacitating0.1Incapacitating0.1Incapacitating0.1			
Tennessee	Naïve before-	Fatal and Incapacitating	0.07		
	after	after Non-Incapacitating Injury	0.15		
			0.12		
	EB before-after	PDO and possible injury	2.48-2.75		
Michigan	and naive	Minor injury	0.60-1.02		
	before-after	Serious injury + fatal injury	0.40-0.76		

HTCMB installation in Pennsylvania

PennDO	HTCMB installed on entire segment		a porti	istalled on on of a nent		
T District	# of segments	Total length (miles)	# of segments	Total length (miles)		
1	106	52.99	10	4.74		
2	8	3.44	70	35.68		
3	225	98.38	36	16.97		
4	90	44.78	28	14.17		
5	166	82.22	64	31.27		
6	144	67.46	12	6.17		
7	0	0.00	0	0.00		
8	390	202.40	36	18.37	HTCMB type	Number of
9	200	95.11	46	22.63		segments
10	0	0.00	0	0.00	Shoulder (one side)	903
11	232	115.62	63	29.86	Single-run (center of	498
12	2	0.75	2	0.74	median)	
Total	1,563	763.16	367	180.61	Shoulder (both sides)	162
					Total	1,563

SPF development for divided freeways considered the following explanatory variables...

- Traffic volume
- Segment length
- Degree of horizontal curvature per mile
- Presence of inside and outside shoulder rumble strips
- Presence of on- and off-ramps
- Presence of outside barrier
- Posted speed limit
- Indicator for year
- Indicator for PennDOT engineering district

CMFs for HTCMBs for all freeway sections

Crash type	Number of segments	Total length (miles)	Reported crashes in after period	EB estimate in after period	Unbiased CMF	CMF standard error
Total			11,424	10,081.46	1.133*	0.019
FI		763.16	3,736	3,624.00	1.031	0.025
PDO			7,688	6,393.08	1.202*	0.023
HB	1563		1,213	426.57	2.835*	0.178
СМ			78	371.82	0.209*	0.025
KA			308	467.25	0.658*	0.044
KA CM			7	68.30	0.101*	0.039

CMFs disaggregated for urban and rural sections

Crash type	Number of segments	Total length (miles)	Reported crashes in after period	EB estimate in after period	Unbiased CMF	CMF standard error		
Urban sections								
Total			8,609	7,745.48	1.111*	0.023		
FI			2,868	2,805.51	1.022	0.030		
PDO			5,741	4,836.72	1.187*	0.028		
HB	808	398.74	948	349.92	2.698*	0.192		
CM			48	268.61	0.178*	0.027		
KA			219	358.46	0.610*	0.049		
KACM			7	49.43	0.139*	0.055		
			Rural sections	3				
Total			2,815	2,335.98	1.205*	0.030		
FI			868	818.49	1.060	0.044		
PDO			1,947	1,556.37	1.251*	0.036		
HB	755	364.42	265	76.65	3.416*	0.426		
CM			30	103.22	0.290*	0.055		
KA			89	108.79	0.817*	0.092		
KACM			0	18.87	0.000	N/A		

Thank you!

Vikash V. Gayah

Professor

Department of Civil and Environmental Engineering The Pennsylvania State University 231L Sackett Building University Park PA 16802 gayah@engr.psu.edu phone: 814-865-4014

sites.psu.edu/gayah

